;*********************************************************************** pro zder0 ; ; Calculates the matrix elements and an LU decomposition of the problem ; of finding the derivatives of a cubic spline with continuous second ; derivatives. ; ; This particular version (to be used with the hd/mhd code with fixed ; boundary values at a fiducial extra boundary layer) has a one-sided ; first order derivative at the top boundary. ; ; To make a "natural spline" (zero second derivative at the end pts), ; change the weights to ; ; w2(1)=2./3. ; w3(1)=1./3. ; w2(nz)=2./3. ; w1(nz)=1./3. ; ; For a general cubic spline, we have an equation system of the form: ; ; | w2 w3 | | d | | e | ; | w1 w2 w3 | | d | | e | ; | . . | * | . | = | . | ; | . . . | | . | | . | ; | w1 w2 | | d | | e | ; ; This may be solved by adding a fraction (w1) of each row to the ; following row. ; ; This corresponds to an LU decomposition of the problem: ; ; | w2 w3 | | d | | 1 | | e | ; | w2 w3 | | d | | w1 1 | | e | ; | . . | * | . | = | w1 1 | * | . | ; | . . | | . | | . . | | . | ; | w2 | | d | | w1 1 | | e | ; ; In this startup routine, we calculate the fractions w1. ; These are the same for all splines with the same z-scale, ; and only have to be calculated once for all nx*ny splines. ; ; In principle, this startup routine only has to be called once, ; but to make the zder entry selfcontained, zder0 is called from ; within zder. In practice, the zder0 time is insignificant. ; ; Update history: ; . ; 20-aug-87: coded by Ake Nordlund, Copenhagen University Observatory ; 27-sep-87: Removed bdry[123] parameters. ; 02-oct-87: Moved factor 3 from zder loop to zder0 loop. ; 04-nov-87: inverted w2(), to turn divides into multiplications ; 11-apr-96: first-order one-sided derivative at top ; ;*********************************************************************** ; ; common cdat,x,y,z,nx,ny,nz,nw,ntmax,date0,time0 common czder,w1,w2,w3 w1=fltarr(nz) w2=fltarr(nz) w3=fltarr(nz) ; ; Interior points ; a3=1./3. w1(1:*)=a3/(z(1:*)-z) w3(0:nz-2)=w1(1:nz-1) w2=2.*(w1+w3) ; ; First point ; w1(0)=0. w2(0)=1. w3(0)=0. ; ; Last point ; cza=1./(z(nz-2)-z(nz-3)) czb=1./(z(nz-1)-z(nz-2)) w1(nz-1)=cza*cza w3(nz-1)=-czb*czb w2(nz-1)=w1(nz-1)+w3(nz-1) ; ; Eliminate at last point ; c=-w1(nz-1)/w1(nz-2) w2(nz-1)=w2(nz-1)+c*w2(nz-2) w3(nz-1)=w3(nz-1)+c*w3(nz-2) w1(nz-1)=w2(nz-1) w2(nz-1)=w3(nz-1) w3(nz-1)=c ; ; Eliminate subdiagonal elements of rows 2 to nz: ; ; | w2 w3 | * | . | = | . | ; | w1 w2 w3 | | . | | . | ; for k=1,nz-1 do begin w1(k)=-w1(k)/w2(k-1) w2(k)=w2(k)+w1(k)*w3(k-1) end ; ; Invert all the w2()'s, turns divides into mults ; w2=1./w2 ; end ;*********************************************************************** function zder,f ; ; The following LU decomposition of the problem was calculated by the ; startup routine: ; ; | w2(1) w3(1) | |d| | 1 | |e| ; | w2(2) w3(2) | |d| | w1(2) 1 | |e| ; | . . | * |.| = | w1(3) 1 | * |.| ; | . . | |.| | . . | |.| ; | w2(N) | |d| | w1 1 | |e| ; ; The solutions of all nx*ny equations are carried out in paralell. ; ; Operation count: 4m+1d+4a = 9 flops per grid point ; ; Timing: ; 14.2 Mfl = 1.6 Mpts/sec on the Univ of Colo Alliant FX-8. ; ; Update history: ; . ; 20-aug-87: Coded by Ake Nordlund, Copenhagen University Observatory ; 27-sep-87: Removed bdry[123] parameters. ; 02-oct-87: Moved factor 3 from zder loop to zder0 loop. ; 15-oct-87: Factors a and b moved out of lm-loops 121. 13->9 flops. ; 04-nov-87: inverted w2(), to turn divides into multiplications ; ;*********************************************************************** ; common cdat,x,y,z,nx,ny,nz,nw,ntmax,date0,time0 common czder,w1,w2,w3 ; ; Check if we have a degenerate case (no z-extension) ; d=fltarr(nx,ny,nz) if (nz eq 1) then begin d(*,*,*)=0.0 return,d endif zder0 ; ; First point ; d(*,*,0)=(f(*,*,1)-f(*,*,0))/(z(1)-z(0)) ; ; Interior points [2m+2s = 4 flop] ; for k=1,nz-2 do begin a=1./(z(k+1)-z(k))^2 b=1./(z(k)-z(k-1))^2 d(*,*,k)=(f(*,*,k+1)-f(*,*,k))*a+(f(*,*,k)-f(*,*,k-1))*b end ; ; Last point ; cza=1./(z(nz-2)-z(nz-3)) czb=1./(z(nz-1)-z(nz-2)) dfa=f(*,*,nz-2)-f(*,*,nz-3) dfb=f(*,*,nz-1)-f(*,*,nz-2) d(*,*,nz-1)=2.*(dfa*cza*cza*cza-dfb*czb*czb*czb) ; ; Eliminate at last point ; d(*,*,nz-1)=d(*,*,nz-1)+w3(nz-1)*d(*,*,nz-2) ; ; Do the forward substitution [1m+1a = 2 flop] ; for k=1,nz-1 do begin d(*,*,k)=d(*,*,k)+w1(k)*d(*,*,k-1) end ; ; Do the backward substitution [1m+1d+1s = 3 flop] ; d(*,*,nz-1)=d(*,*,nz-1)*w2(nz-1) for k=nz-2,0,-1 do begin d(*,*,k)=(d(*,*,k)-w3(k)*d(*,*,k+1))*w2(k) end ; return,d end